Gcd
Time Limit: 10 Sec Memory Limit: 256 MB[][][]Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
1<=N<=10^7
Solution
直接莫比乌斯反演即可。
然后对于这个式子,我们下界分块一下即可。
Code
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
1 #include2 #include 3 #include 4 #include 5 #include 6 #include 7 #include 8 using namespace std; 9 typedef long long s64;10 11 const int ONE = 1e7+5;12 13 int T;14 int n,m;15 bool isp[ONE];16 int prime[664580],p_num;17 int miu[ONE],sum_miu[ONE];18 s64 Ans;19 20 int get() 21 {22 int res=1,Q=1; char c;23 while( (c=getchar())<48 || c>57)24 if(c=='-')Q=-1;25 if(Q) res=c-48; 26 while((c=getchar())>=48 && c<=57) 27 res=res*10+c-48; 28 return res*Q; 29 }30 31 void Getmiu(int MaxN)32 {33 miu[1] = 1;34 for(int i=2; i<=MaxN; i++)35 {36 if(!isp[i])37 isp[i] = 1, prime[++p_num] = i, miu[i] = -1;38 for(int j=1; j<=p_num, i*prime[j]<=MaxN; j++)39 {40 isp[i * prime[j]] = 1;41 if(i % prime[j] == 0)42 {43 miu[i * prime[j]] = 0;44 break;45 }46 miu[i * prime[j]] = -miu[i];47 }48 miu[i] += miu[i-1];49 }50 }51 52 int main()53 {54 n=get();55 Getmiu(n);56 for(int d=1; d<=p_num; d++)57 {58 if(prime[d] > n) break;59 int N = n/prime[d];60 for(int i=1,j=0; i<=N; i=j+1)61 {62 j = min(N, N/(N/i));63 Ans += (s64)(N/i) * (N/i) * (miu[j] - miu[i-1]);64 }65 }66 67 printf("%lld",Ans);68 }